Molecular and Cellular Pathobiology Phosphorylation of H2AX at Ser139 and a New Phosphorylation Site Ser16 by RSK2 Decreases H2AX Ubiquitination and Inhibits Cell Transformation

نویسندگان

  • Feng Zhu
  • Tatyana A. Zykova
  • Cong Peng
  • Jishuai Zhang
  • Yong-Yeon Cho
  • Duo Zheng
  • Ke Yao
  • Wei-Ya Ma
  • Andy T. Y. Lau
  • Ann M. Bode
  • Zigang Dong
چکیده

Histone H2AX is a histone H2A variant that is ubiquitously expressed throughout the genome. It plays a key role in the cellular response to DNA damage and has been designated as the histone guardian of the genome. Histone H2AX deficiency decreases genomic stability and increases tumor susceptibility of normal cells and tissues. However, the role of histone H2AX phosphorylation in malignant transformation and cancer development is not totally clear. Herein, we found that ribosomal S6 kinase 2 (RSK2) directly phosphorylates histone H2AX at Ser139 and also at a newly discovered site, Ser16. Epidermal growth factor (EGF)–induced phosphorylation of histone H2AX at both sites was decreased in RSK2 knockout cells. Phosphorylated RSK2 and histone H2AX colocalized in the nucleus following EGF treatment, and the phosphorylation of histone H2AX by RSK2 enhanced the stability of histone H2AX and prevented cell transformation induced by EGF. RSK2 and DNA-PK, but not ATM or ATR, are required for EGF-induced phosphorylation of H2AX at Ser139; however, only RSK2 is required for phosphorylation of H2AX at Ser16. Phosphorylation of histone H3 was suppressed in cells expressing wild-type H2AX compared with H2AX knockout (H2AX / ) cells. EGF-associated AP-1 transactivation activity was dramatically lower in H2AX / cells overexpressing wild-type H2AX than H2AX / cells expressing mutant H2AX-AA. Thus, the RSK2/H2AX signaling pathway negatively regulates the RSK2/histone H3 pathway and therefore maintains normal cell proliferation. Cancer Res; 71(2); 393–403. 2011 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of H2AX at Ser139 and a new phosphorylation site Ser16 by RSK2 decreases H2AX ubiquitination and inhibits cell transformation.

Histone H2AX is a histone H2A variant that is ubiquitously expressed throughout the genome. It plays a key role in the cellular response to DNA damage and has been designated as the histone guardian of the genome. Histone H2AX deficiency decreases genomic stability and increases tumor susceptibility of normal cells and tissues. However, the role of histone H2AX phosphorylation in malignant tran...

متن کامل

In vivo Analysis of H2AX Phosphorylation Induced by γ-Radiation

ABSTRACT          Background and Objectives: Exposure to ionizing radiation in modern societies is inevitable and can cause a variety of adverse health effects such as cancer and birth defects. Therefore, a reliable, repeatable and sensitive method is required for evaluation of radiation exposure. The aim of this study was to determine the amount of hist...

متن کامل

Evaluating Gamma-H2AX Expression as a Biomarker of DNA Damage after X-ray in Angiography Patients

Objective: Coronary heart disease (CHD) is one of the most common diseases. Coronary angiography (CAG) is an important apparatus used to diagnose and treat this disease. Since angiography is performed through exposure to ionizing radiation, it can cause harmful effects induced by double-stranded breaks in DNA which is potentially life-threatening damage. The aim of the present study is to inves...

متن کامل

γ-H2AX as a protein biomarker for radiation exposure response in ductal carcinoma breast tumors: Experimental evidence and literature review

Background: H2AX is a histone variant that is systematically found and ubiquitously distributed throughout the genome. DNA double-strand breaks (DSBs) induce phosphorylation of H2AX at serine 139 (γH2AX), an immunocytochemical assay with antibodies recognizing γH2AX has become the gold standard for the detection of DSBs. The importance of this assay to investigate different individu...

متن کامل

Dub3 controls DNA damage signalling by direct deubiquitination of H2AX

A crucial event in the DNA damage response is the phosphorylation and subsequent ubiquitination of H2AX, required for the recruitment of proteins involved in DNA repair. Here we identify a novel regulator of this process, the ubiquitin hydrolase Dub3. Overexpression of wild type, but not catalytic inactive, Dub3 decreases the DNA damage-induced mono-ubiquitination of H2A(X) whereas downregulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011